

A Microwave SAGE Experiment

B. Herman, University of Arizona

D. Ward, D. Feng, S. Dvorak, R. Kursinski, U of AZ

T. Pett, S. Cass, D. McKague, Ball Aerospace

S. Syndergaard, UCAR

B. Chu, NASA Langley

- Fly existing ISS SAGE III and a microwave (MW) radiometer on same platform to make simultaneous solar occultation measurements.
 - Preliminary orbit parameters:
 - Altitude: 500-550 km
 - Inclination: 56°
- First space-based MW solar occultation experiment.
- Utilize a 3 x 1.5 meter MW antenna that will provide ~1.5 km vertical resolution per measurement.

Overview

- MW measurements used to retrieve profiles
 - in stratosphere and upper trop
 - Water vapor
 - Ozone
 - Temperature
 - Water isotopes (H₂¹⁸O and HDO)
- MW retrievals quite independent of SAGE III retrievals. Thus, they can be combined to enhance overall accuracy.

Overview

- MW limb emission and SAGE III limb scattering observations can be made between solar occultations to:
 - Substantially increase data coverage (common criticism of solar occultation experiments)
- Additional nadir scanning MW radiometer may allow 2-D tomographic retrievals of water vapor and ozone distributions

- Atmospheric extinction at 20 km for mid-latitude summer conditions.
- Measurements near 118.75 GHz O₂ line will be used for temperature.
- Measurements near 183.31 GHz H₂O line for water vapor.
- Strongest O₃ line centered at 195.43 GHz.

Figure showing the possibility of retrieving the $H_2^{18}O$ isotope by measuring extinction near the 390.60 GHz line.

Stratospheric Water Vapor

- Total slant path optical depth at selected frequencies throughout the stratosphere.
- Most of the extinction is due to absorption by water vapor.

Upper Trop. Water Vapor

- Total slant path optical depth (SPOD) for selected frequencies throughout the upper troposphere.
- Where SPOD ~1, most of the extinction is due to absorption by water vapor.

Stratospheric Ozone

- Total slant path optical depth at selected frequencies throughout the stratosphere.
- Most of the extinction is due to absorption by ozone.

Advantages

- Solar occultation method is well suited for longterm monitoring of trends.
 - Other satellite monitoring techniques cannot match its combination of stability and vertical resolution.
- Proposed experiment allows continuation of the SAGE data series.
- Additional MW measurements are better suited to recover accurate water vapor and temperature profiles than existing SAGE wavelengths
 - Could potentially be used to verify and "back-calibrate" previous SAGE retrievals.

Other Advantages

- In solar occultation mode we expect much improved accuracy over MW emission sounders.
 - Transmission is much less temperature dependent than emission
 - Makes retrievals less susceptible to temperature uncertainties.
 - Received power in solar occultation mode is
 1-2 orders of magnitude greater than limb emission.

Advantages (concluded)

- MW frequencies will penetrate thin cloud layers, allowing more frequent retrievals into the troposphere.
- Determination of trends in upper tropospheric and lower stratospheric water vapor is critical to understanding climate changes.
- Water isotope profiles can be used as tracers for diagnosing transport and dehydration mechanisms.